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ABSTRACT

Credibility theory is the name given by American actuaries to
linear estimation formulae developed to experience—rate insurance
pre.itSSs. These formulae can be viewed as linear Bayesian ~orecasts
of a conditional mean , exact under cer tain conditions, and best least—
squares approximations otherwise. This paper surveys the recent
theoretical. developments in the actuarial literature, relates these
results to other linear estimation methods, and describes a variety
of special models and applications . 
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A SURVEY OF CREDIBILITY THEORY

by

William S. Jewell

1. INTRODUCTION

Credibility theory is the name given by American actuaries to heuristic

linear estimation formulae developed in the 1920’s for insurance rate—making

problems. These results and their recent extensions are not only useful in

practice, but have interesting relationships with other estimating and

forecasting methods, such as the classical formula for the combination of

observations due to Gauss, .*~1.tmt—likelihood estimators , Bayesian esti-

mation, and linear filter theory . Credibility forecasts can be viewed as

linear Bayesian forecasts of a conditional mean, exact under certain con-

ditions, and best least—squares approximations otherwise.

Many new theoretical results and special models have appeared in the

actuarial literature; credibility theory was the theme of a recent actu-

arial research conference L 38]. In this paper, we shall survey these

results, and relate them to linear estimation results from other fields.

Other noninsurance application of credibility will also be described. 

- ~~-..--— .~~~- ~—
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2. THE BASIC CREDiBILITY -FORMULA

In the original insurance experience rating problem which give rise to

credibility, we consider a collective of similar but somewhat heterogeneous

insurance contracts which are grouped together to “spread the risk.” It is

assumed that detailed prior statistics are available from this pool; in

particular , the manual or collective fair premium, m E(~} , is the

average value of the risk random variable of interest, x , such as number

of accidents per year, total dollar claims per unit exposure , etc.

Nov suppose a new insurance contract of unknown risk characteristics

is underwritten, and assigned to this pool. At the beginning , the m di-

vidual fair premivn charged would be j ust the collective premium m ; how-

ever , as n years’ individual experience data (x 1,x2, ~~ 
x1~] is

obtained on this risk , it seems reasonable that the individua l sample mean,

— 
~ 

xe/n , would tend to reflect more nearly the risk characteristics of

the individual, except for the large variability in ~ with sm all n .

Using heuristic reasoning on the pooling of data (and considering only

the number of claims per year), the early actuarial literature argued for

an experience-rated fair premi um for next year’s risk, , of the form

(2.1) E{z,~ 1 f x1,x2, .. ., x1~
} 

~~~ (1 — Z)m + z~ ,

with

(2.2) Z ”~~~~ N
.

Z was called the credibility factor; it mixes the manual premium, m ,

and the experience premium, ~ , with increasing “credibility” attached to

the latter as n increases. The time constant N was essentially 

— - -~~-. -  
- - -

~~~
--—-—

~~~~ 
,.- ---

~~
-
~~~~
---——-.—-- -
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determined by trial and error for different types of insurance. This

credibility formula was successfully used in American casualty insurance

rate-making for more than 50 years , with innumerable variation and elabo—

ration . A survey , with references , may be foun d in Longley—Cook (41] ; see

also [22] and [23] .
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3. TEE BAYESIAN APPROACH

The modern development of credibility th.ory begins with the

resurgence of interest in Bayesian ideas in the 1950’s, and with the

works of Bailey ( 2 ] ,  [3 ]  and Nayerson [42], who showed that the

experience—rating problem could b formulated as finding a Bayesian

conditional mean, as already implied by the notation in (2.1).

Let each member of the risk collective be characterized by a

(scalar— or vector—valued) risk partmrmter 0 ; the heterogeneity of

the collective is then described by a pr ior density u(e) , from which

each risk draws an independent sample. Given e , the distribution of

an individual’s risk variable for one year, — x , is given by a

likelihood density , p(x I e) ; on an individual basis , the fair premium

is

(3.1) m(O) — E( I 0) — fxp (x I 0)dx

and the individual variance is

(3.2) v(e) — V{~ I 0) — J (x — vi(8))
2p(x I 0)d~

The pooled statistics from the collective of risks, however, have

a mixed collective density p(x ) — Ep(x 
~~~) , and thi s implies the

collect ive fair premium is:(3.3) m — E{} — E m (0)

with total collective variance

(3.4) v • V(j} • E + D ; E — Ev (Ô ) ; D • Vm (0)

Using standard Bayesian arguments , the exact experience—rated fair

_ _ _  ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ -— - — — -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~
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premium is:

~~ n+i ~ 
x1,x2, ... , x } • E(m(6) 

~ x1,x2, ... , x0
)

I ~ P(*~ I O)u(0)
(3.5) — fm ( O )  I ~~~~~~ dO ,

I p(x~ z)u(cs)du
L t— l

where ws. have assumed that each successive year’s experience is

independent , for a given (constant) 0 . The term in square brackets

is the posterior—to—data density of 0 for this risk.

Bailey and Mayerson shoved tha t the exact result (3.5) could be

rearranged into the credibility form (2.1) for the special prior—

likelihood combinations: Beta—Binominal, Games—Poisson, Games—Exponential,

and Normal—Normal (known variances). m was calculated by (3.3) , and

N in (2.2) was a function of the h,~gp erparam eters of the prior, u(O) 

-_—--.— 
-
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4. LEAST-SQUARES

The next step in th. development of credibility was through least—

squares theory . Suppose we have a vector—valued random variable x from

whose observations x we are trying to predict a scalar random variable

~ through a forecast function f(x) . Assuming we know the joint dis-

tribution P(y,~~ — Pr{ c y ;~ .c x} , the classical means of evaluating

any f is the mean—square error norm;

(4.1) I — f(y — f(x))
2dP (y , x)

It is known that the integrable function f° which minimizes (4.1) at

value ~ 0 is the conditional mean :

(4 .2) f °(!) — E{~ i • x)

In Bayesian terminology, the conditional mean minimizes quadratic Bayes ’

risk.

In many cases the exact conditional calculation (3.5) is too difficult

and an approximate forecast function is sought . Since completion of the

square shows tha t

I — 10 + J(f °ç~) — f(x)) 2dP (x)
(4.3)

— EV(j I i) — V(~ } — Yf °(i) ,

then any approximate forecast f can be evaluated in terms of a least—

squares fit to the conditional mean over the observation space.

A typical choice of an approximate forecast is a linear f ~osotion

(4.4) f (~) — a + Z a ~x~

where the para meters are adjusted to minImise (4.1) or (4.3). It is well 

-~~~~~~-~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- ~~~~~~~ ---_--—~~~~~~~~
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known that the optimal value of the vector & • I*
j  

I 1 # 0] is

given by the “normal” system of equations

*(4.5) Ca — b ,

* *with a selected so as to make the optimal linear forecast f
0

unbiased , e.g.,

(4 .6) Ef *(~ ) — E{} ; a — E{
~} — ;

and the covariance matrix C and the vectors b and rn are:t

(4 .7) C — V{j} ; b — C{i;~ } ; ~ 
— E(j )

The prior variance of the optimal linear forecast is:

(4.8) Vf*(i) a*tCa* — !. ‘k — b ’C ’bo — C(f (i) ;~ }

giving minimal approximation mean—square error:

(4.9) 1* — 10 
— Vf°(x) — b’C~~b

which is mealier, the closer the conditional mean E(~ I x} is to a

linear form . In this sense , the optimal linear f*(!.) is a best least—

squares linearized Bayesian approximation.

In 1967 , Biihlmann (4], [5] showed the important result that , for

the collective model of Section 3, the optimal linear estimator for the em—

perience—rated fair premium is exactly the credibility form (2.1), provided

~For any two random vectors or scalars j  and j  , we define the
fi (possibly nonsquare and unsyametric) covariance matrix: C(u;~) —f E(

~~~~~~
’}  — E{~}E{v’) , and call C(j;j) — V{p) , the usual covariance

matrix of ~ on itself.

_ _ _ _ _  

- - - ----—- -———‘- - 
— __I_ —  

—- . -
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that the time constant in the credibility factor is chosen as the ratio

of the components of the collective variance (3.4), i.e.,

(4.10) N — Ev (Ô)/Ym(~) — E/D

This shows that the basic credibility formula is robust, and has

mean—square error (estimation error variance)

(4.11) 1* — E + (1 — Z)D ,

which shows clearly how increasing experience data improves the estimate.

The sample mean alone, ~ , is a poorer estimate because it has
—l *I — (1 + n )E , which is always larger than I . However , if the

prior variation , D — IFm(Ô) , is very large compared to E — Ev(~)

(a “diff use prior”) then N is ver y small, and f* and ~ are

practically the same.

Notice the important result

(4.12) C{~ — f*(j );f *(j ) } — ~ ;

that is, any error remaining in the optimal forecast is uncorrelated

with the predictor.

—~~~ ~~~~~~~~~~~~ fl- .,
~,~~~ --

&- _— ‘“ - -~~~~-~~---- —
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5. UACT CREDIBILITY

In 1973, the author shoved tha t the class of likelihood—prior

families for which the credibility approximation (2.1), (2.2), (4.10)

vas exactly the Bayesian conditional mean could be extended [25],

(27].

Consider the Koopaan-Pitman-Darmia exponential. f amily of likeli-

hood. in which the sample mean is the only sufficient statistic and

,vs~ua ’a Z paroir~eti’iaation is chosen , i.e. ,

(5.1) p(x I 0) — (x c X)

for continuous or discrete measure in a given ra nge X , determined

by the nonvanishing of a(x) . c(O) is a normalizing factor to make —

f
p(x I 0 ) d * — 1 .

The natural conjugate pr ior corresponding to the likelihood (5.1)

is

-n —ax
(5.2) u(O) — 

[cc
~~~~::) . (0 c

defined over a natural parameter apace, 6 , for which (5.1) is a density,

i.e., for all values of 0 for which c(O) is finite. Restrictions

on the hyperparameters (n0,x0) may be necessary to make (5.2) a density

• as well , i.e., to make the normalization d(n0,x0) finite. We shall

henceforth assume n > 0

The advantage of a natural conjugate pair is that the family is

closed under sampling , that is, the density of è posterior to the data

_  ----~~--~~ -~~~~ -~ -~~~~~--~~~~~~~~~~--~~~~~~~~~~~~~~
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is of the same form as (5.2), with hyp.rparameter updating:

n ~-n +n

(5.3) 
o

n
X 4 - X  + ~ •0 0 tt—l

Since m(8) — —c ’(O)/c(O) for this family, integration of (5.2) by

parts gives

— (5.4) Em(0) — 
u(0j I e 

+
0 0

c(0) is analytic in the interior of 0 , and, in most cases of interest ,

vanishes at the boundary as well , making the first term on the RRS of

(5.4) zero. The precise regularity conditions under which this happens

are complex , and are covered in [27] .

Assuming these conditions are satisfied , (5.3) then implies

-

(5.5) E{m(O) I x1,x2, ... , x l  — + n

The final steps, which are similar , show that x0/n0 — m , and n0

is the time constant N (4.10) of Bihlmann, thus proving credibility

is exact for (5.1) , (5.2) .

Additional examples beyond those of Bailey and Mayerson are given

in (25], and the extension to credibility mixing of more general

statistics for arbitrary exponential families is also demonstrated.

_________ - — -—— — 

p — .—_ -_— --_-_-_—- ---— 

—• —‘- 
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6. MULTIDIMENSIONAL CREDIBILITY

The previous results are easily extended to prediction of a multi—

variate conditional mean (231, (26). Let x be a p—dimensional random

t variable, depending upon a risk parameter 0 through a likelihood

density p(x I 0) ; a prior density on e Is assumed known. For

t — 1,2, ..., n , we observe n independent realizations, j~ —
of this random variable for a fixed 0 . The problem is to make a

(vector) forecast f(X) of the next observation, E(i
~~ +1 

I Xl

where X is the p x ~ matrix of data {x
~ I t — 1,2, ... , n}

From the likelihood and the prior, we calculate the vector means:

(6.1) a(O) E{~ I 01 ;  v — Ea(Ô) ;

and then the two p x p covariance matrices;

(6.2) B — EV{~ I ë}

and

(6.3) D — V{a(0)}

The total covariance matrix of any x
~ 

on itself is B + D , but the

covariance matrix between any x~ and 
~u 

(t ~ u) is just D

Assuming that the forecast of each component of is linear

in all the data X , then the use of least—squares theory gives after

some algebra the aultivariate credibility formula:

• (6.4) E{i.~~~~~
1 

I Xl ~ f
5

( )  — (I — Z)rn + Zj

where I is the p x p identity matrix, and is the vector of

sample means,

L_ _  _ _ _ _ _
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The p x p credibility matrix Z satisfies formulae analogous to the

one—dimensional result (2.2) :

(6.5) Z — n(N + nI)~~ ; (I — Z) — 1 (ZN) — (NZ) ;

and the p x p matrix of ti~ne constants, N , is analogous to (4 .10) :

(6.6) N — ED 1

If the eigenvalues of N are (v~} , then those of Z are

{n/ (n + v1)} ; one can show that in the nondegenerate case lim Z — I .

In other words, the initial forecast (no data) is the prior mean e ;
successive forecasts utilize linear mixtures of all sample means in

varying proportions ; but ultimately, each component of the risk is

estimated only through its own sample mean , as n ~~~ — . Specific

examples are given in (23). The p x p “preposterior” estimation

error covariance matrix for the optimal vector forecast in (6.4) is:

(6.7) — f *( X ) }_ E  + (I — Z)D

This is similar to (4.11), but of course only the diagonal elements

of the LHS of (6.7) were minimized in selecting the optimal coefficients.

There are also exact multi—dimensional results (26], corresponding

to Section 5, for the linear muitivariate exponential fami ly likelihood :

a(x)*xp {—O ’z}
(6.8) PC! I !) — c(0) CX t X)
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O is now a p-dimensional vector in the complete parameter space 0 for

which the normalization, c(O) , is finite. This family has the vector

sample mean, , as a sufficient statistic, and has been investigated

somewhat; however, their natural conjugate priors have been little studied.

The simplest natural conjugate prior for (6.8), anaioious tt (5.2), is

(6.9) u(e) — [c(O)] °exp [—O ’x ]  (0 e 0)

where the scalar n and the vector are hyperparameters; we assume

always u(0) vanishes at the boundary of 0 . Embarrassingly, in this

case, although (6.4) is exactly the conditional mean, Z degenerates to

a diagonal matrix because N — n01 , and the forecasts for each component

of x are independent!

To remedy this, the author develops in (26] an “enriched” version of

(6.9), for likelihoods (6.8) in which a(x) will factor into a product

of p independent components when is subject to a linear transfor-

mation. In this case, enough additional hyperparameters can be introdticed

to make N and Z non—diagonal, and all components of the sample mean

are used in prediction of any one future value.

An important extension permits quadratic terms in the exponent of

(6.8), and leads to the well—known multinor ’mal likelihood with unknown

mean and unknown precis ion. The usual mean—precision prior is a nozwzai—

Wiahart distribution, due to Ando and Kaufman (1 J ;  its “thinness” is well—
known in the literature, and is similar to the degeneracy described above.

• Through the use of linear transformation, it is possible to extend the

Ando—Xaufman prior, again giving a full—dimensional credibility formula

(6.4) for the conditional mean [26]. One also finds the following

interesting credibility formula for the conditional covariance matrix of

this enriched multinormal : 

•~~~-~ -----~~ ~~ - -- —- ~~~~~~~~~~~~~~~ — —-~~~~~~~~~-~~~~ ~~~~~~~~~~~~ --  - -—-~~~~~~~
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I Xl — (I — Z V(j) + ~ [~ ~L ~~I 
— i)(A

~ 
— 

3)
’]

(6.10)

Not ice how the sample covartance ultimately dominates.

1-
_ _ _ _ _ _ _ _ _ _ _ _ _ _  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
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7. CLASSICAL ESTIMATORS

We have emphasized the Bayesian role of credibility, either as an

approximat ion to a conditional mean , or as an exact result for certain

priors and likelihoods. However, there are other interpretations

of credibility which show its relationship to classical least—squares

estimators.

Suppose we rewrite (6.4) for the case in which only one p—

dimensional observation x — is made:

(7.1) 
~~~ 

I 
~~~~~ 

~~~ 
(I — Z1)rn + Z1x1

with

(7.2) Z1 — (I +

Rewrite this as:

(7.3) E{~ 2 I ~~~~
} — 

~~~ Z1
(x
1 

—

and note that Z1 can be written as:

(7.4) — D(E + D)~~ — C{~2 ; j1
}(Y{j

1
}J

1 .

In this form, we recognize (7.3) as a well—known exact result, the

regression of 
~2 °° for a joint multinormal distribution of

(~~~~ •!2~ •
For the second interpretation, write in linear model f o 2~n:

I

- - - - _ _
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(7.5) — .( i) + (t — 0,1,2, ...)

where is an appropriate error variable, independent of 0 and

other errors , and

(7.6) E(~~} — 0 Ct — 0,1,2, • . . )

For t — 1 , we observe — , and this is an estimator of

E{~2 I z1
} — E{a(~ ) I x1l with error covariance matrix

(7.7) V(~i1} — EV{ii1 I — E .

Now, a prior estimate can be thought of as an initial observation at

t — 0 , so that the initial credibility estimate — rn is also an

unbiased estimate of m(~) before the other observations begin.

Since ~ is a constant, (7.5) shows that the error covariance of

this estimate is:

(7.8) Y{~~} — Ym (Ü) — D

By elementary manipulations:

(7.9) E{~ (ë)  I ~~ — !‘!l) ~~ (E~~ + D
_l
)
_
1{D1! + E 1x1] , 

—

and we recognize that the “two” observations and are

combined by weighting with their respective preoisions, D~~ and

This ancient formula for the combination of observations is

due to Gauss , and is known to be exact for and .
~2 

independent

and (multi—) normally distributed. The preposterior estimation error

— — —---~---- — —— —  s_— — —-- ——~~~~~~~ _ —--- — — -~ — — —-- — —— — —-- —
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precision is the inverse of (6.7) with Z —

(7.10) - f *( 1)} - + E~~

the sum of the two observation precisions. Similar remarks apply to

the Bayesian regression model of Section 10; see (10.10) and [34).

Notice that credibility formulae are mixtures of a prior mean

and a classical maximum likelihood estimator. This is true for a

large class of identifiable linear models (10.7), and in the exact

case follows easily from the definition of exponential families.

Finally, we note that many articles in the statistical literature

develop similar “wide—sense conditional expectations” and “parameter

shrinkage” formulae, [14], [40], (17], (18], (20), [48], (53); they

are called “pseudo—Bayes estimators” in filter theory (47], and are

no doubt being rediscovered in other fields as well. However, the

intimate relationship between the Bayesian and the classical appraoch

is not well appreciated, and there is widespread belief that these

results are exact only for multinormal distributions, which is not

true
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8. OTHER CREDIBILITY MODELS

We now consider acme of the many extensions of the credibility

model developed to deal with specific estimation problems in insurance.

These models all use least—square approx imat ions , usually exploiting

the special structure to avoid numerical inversion of th* covariance

matrix in (4.5). See also the references in [13 J and [38] .

81 Other Functions

The first idea is that least—squares theory also applies to

f tnctions of rando. variables, with appropriate modifications to (4.7).

Suppose in the basic model of (2.1), (2.2), (4.10), we replace x

by I(u — i) throughout; here u is some fixed value in the range

of i , and I is the unit—step function, unity for nonnegative

arg uments , zero otherwise. Since ~~ 
I (u  — x

~
) counts the number

of samples not greater than u , and EI(u — i) — P(u) , we get a

credible conditional distribution foreca st (24]:

(8.1) P(u 1 x) ~ (1 - Z)P(u) + I(u - x~)/nlt—l J

as a mixture of the prior collective probability, P(u ) , and the

experienced sample distribution. Z — n/(n + N) , as before, but the

t ime constant depends upon u:

(8.2) N — 
P(u)[l — P(u)1 

—

— 

YP(u I e)

(8.1) is exact only in the simple case of Beta/Bernoulli prior/likelihood.

If P(u) is continuous, it gives a mixed function of u which has

____ - - —- — -- -
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smaller mean—squared error for every u than using the sample dis-

tribution alone.

Clearly, the same idea also applies to estimating moments of ~

the difficulty being that higher collective moments corresponding to

(3.3), (3.4) must be known. In (5], B~hlmann develops a credibility

formula for the conditional variance 
~~~~~ 

x 1 , x2, ... , x l

based upon separation into a “variance” part and a “fluctuation”

part , and using several approximations; see also (6.10).

Estimating fractiles or order statistics by credibility seems

difficult; however B ihlaann (9] shows that one can estimate the

mass between any two ordered data points of given rank.

In [11], de Vylder has studied the optimal form of the predictand

to be used in the semi—linear form:

(8.3) f(x) — a~ + a1 ~ g~x~) ,
t—].

for arbitrary likelihood and prior. The resulting integral equation

uses the conditional density p(x2 I x1) to find the optimal g ,

and seems most useful for discrete x . (12]

8.2 Compound Models —

A basic concept in casualty insurance is that the total dollar

claims in a given exposure period is related to both fr equency and

severity of a claim, once it occurs; this leads to a risk random

variable which is the random sum of other elementary random variables.

The major contributions are (7), (21], (231, [431 , (44].

-
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8.3 Bonus HunRer

It is a well—known fact that experience rating schemes induce

a compensating behavior in the insured individual . For example ,

small claims will not be reported in order to keep future dividend

payments down; insurance companies often encourage this, even though

it makes estimation of the true risk more difficult. (45] examines

the effect of this “bonus hunger” on credibility plans.

8.4 IBNR Models

Many insurance claims take a long time to “develop,” that is,

a claim in year t will incur “losses” in year t,t+l,t+2, ... ;
the total dollar claim is “incurred but not (fully) reported.”

Thus, at any epoch in time, one has an ThNR triangle of partially

developed claims which can be used to estimate the final totals;

correlations in observations in both the cohort and calender time

dimensions are likely. These problems have been approached by Straub

and Kamreiter using least—squares techniques (39], (49].

8.5 Time—Dependent Models

The analysis of time—dependencies is of great interest. In the

general nonstationary case where n + 1 p—dimensional densities,

I e) , (t — 1,2, ..., n+l) , are available, the optimal linear

predictor requires inversion of an np x np covariance matrix, which

is hardly satisfactory. However , if the time—dependency is of separable-

mean tWe [28], that is, for the means:

_ _ _ _ _ _ _ _ _ _  



-~~-- -~~—---
~

21
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. 
(8.4) a

~~
(e) — E(

~~ I e) — kj~ 
• r~(8) 

(i — 1,2, • .•~ p

- 

\t  — 1,2, ... , n+1

(with arbitrary time dependence of the covariance), then one can show

that only matrices of order p x p need be inverted.

t Another modeling approach is to consider that the risk parameter

is itself changing over time even though the likelihood is stationary

for a given 0 . Thus, by specifying some joint prior u(01 02,

...) for the risk parameter in successive time periods, the

evolutionary mechanism of the risk process is completely determined

(28]. A special case of interest is the one—dimensional random shock

model of Gerber and Jones [15], [16), [29] in which the evolutionary

mechanism provides a sequence of mutually independent scale and location

shifts 
~~~~ 

, to the location parameters of the risk variables,

so that:

(8.5) E{
~~ I 0~,k~,st} — m~

(O
~

) — ktm~_1
(Ot_1) + , (t — 1,2, ... )

where and (k ,e u — t,t+1, ...} are mutually independent.

Forecasts for successive time periods follow a simple recursive cal—

culation scheme; in many cases where the moments of kt ‘ are

stable, the credibility weights are ultimately of geometric form.

In [29), the author explores in detail the “good” forms of C

and b in (4.5) which lead to forecasts in either closed or recursive

form.

8.6 Conditional Distributions

An obvious criticism of the multi-dimensional formula (6.4)

is that in estimating the future value of a selected component, say

- ~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- 
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— 

~s,n+l all of the remaining data is used in a linear approximation. 
- 

-

If one could easily calculate the 5th conditiona l density

p5(x
5t I x ; O) , (~~~~ 

is without x.t ) then one could use just a

one—dimensional linear approximation in terms of [x51,x52, ~~~ 
x5~] ~

now, however, the mean and variance components of this conditional

density are quite complex, and are time—varying in the sense that differ—

- 
- 

eat value of must be substituted. A complete development is

given in (28]. As might be expected, simplification occurs only if

the conditional mean is of separable type.

An important special model of this type has been analyzed by

B~ihlmann and Straub [6], [10], in which is the claim rate (total

portfolio $ claims per unit volume of business), and x2~ is the . -

given volume of business in year t . By elementary assumptions:

(8.6) E{ 1~ x2~
;0} — m0(0) ~ Y(~1~ x2~

;O} — v0(0)/x2t

where m0(8) and v
0(0) are moments associated with a single unit

volume. The credibility forecast is bilinear in x1~
x2t (total $

claims) and x2~ (volume) and uses the latter as operationa l time

for credibility, rather than n

8.7 Minimax Credibility

The use of other than quadratic error norms seams mathematically

intractable in approximating unknown conditional means. An interesting

model by B~hlmann and l4arazzi C 8) adapts the point of view that Nature

(who picks m , D , and E) is play ing a game against the actuary;

the resulting strategies depend strongly on the assumptions about the

regions of play open to Nature .

H 
_   _ _ _I.. - - - - _ _ _ _ _ _ _  _ _ _ _  
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9. COLLATERAL DATA AND RIERARCHIAL MODELS

Suppose that the different dimensions of ~ refer to p different

individual risks, each with a different risk parameter, O~
(i — 12, ..., p) , independentl y distributed according to the same prior

density, u(0) . In this case , it is easy to see that E , D , and Z of

Section 6 are diagonal, and in predicting E{ 5~~.,.1 I Xl for the 5th risk,

the experience data {xjt I (i ~L a) (t — 1,2, ... , n)} from the other

members of the cohort is not used. In other words, the one—dimensional

form (2.1), mixing m and the ~~ component of ~ , is optimal.

This result is disturbing to many practitioners, who feel that data

from other risks in the same portfolio contains valuable collateral m i  or—

aation. Similar arguments are advanced about the use of cohort data in the

otherwise unrelated “empirical Bayes” approach .

B~hImann and Straub (6 1, [10], [50] approach this problem by using a
hanogeneous linear least—squares forecast, in which a0 — 0 in (4.4), and

the {aj I J # 0) are selected so as to minimize (4.1), but constrained so

that the forecast i. still unbiased. In the simplest credibility model

(2.1), the collective prior mean, m , is then replaced by the estimator:

(9.1) ~ (X) — 
~i—l t—l

the grand samp le mean of all cohort data. This also eliminates the problem

of estimating m , but not that of estimating N • It also gives a larger

mean—square error than (4.11) .

_  _  
I 
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In [30], the author constructs a heirarchial model, in which the

insurance company and all risks in its portfolio are characterized by an

additional byperparaaeter • , with a hyperprior distribution over the

universe of all such collectives. • is the “quality” of this particular

portfolio.

Assume each individual risk (i — 1,2, ..., p) has first and second

momenta

(9.2) a(Oi,~
) — E{

~i~ I e~,$} ~ 
v(31,~) — V(

~~t 
I e~,,}

Prior information now consists of an universa l mean over all collectives,

(9.3) H — EEm (~ ,$)

and three components of universal variance :

(9.4) F — EEv(ë,3) ; G — EVa(~,~) ; H — VEm(~,~)

(In the above expressions, the inner operation is on , with • fixed,

and the outer operation is on $ .) F and G correspond to the two terms

in (3.4), averaged over all possible collectives, while H is a new term,

corresponding to inter—portfolio variation. Presumably, one could easily

estimate H , F , C , and H from a nationwide bank of experienc, data

from different insurance companies. In predicting x , we now have tos,n+l
“learn” simultaneously about both 0~ and $ , and all collateral data

from the portfolio will be - used since all risks have the sue $

The optimal estimator then consists of three terms:

n
(9.5) E{X5~~.~J I Xl — (1 — z) ((l — Z0)M + Z~

&(X)] + Z 
~~~ 

. 

--- . ----— ~~~~ - - —~ - - -—--- - - - - 
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The individual credibility factor , Z , is given by (2.2), but in place of

(4.10), N — F/C

The term in square brackets represents the best current estimate of

the fair premium for “our” collective; it mixes the universal mean, H

with the grand sample mean (9.1), using a collective credibi lity factor

(9 6) Z —c F + ~~~ + n pH~

Note that Zc 
c 1 as a ; that is, a(X) is not ultimately “fully

credible” f or the fair premium of “our” collective; this is because we have

only a finite sample of {o~) for a fixed $

If H 0 , (9.2) reduces to the usual credibility formula . B~h1mann

and Straub’s result can be seen as a limiting case in which H ~ ~ ; that

is, we have a “diffuse (hyper—) prior” on 6 , and inter—portfolio van —

ations are very large.

1~~~~

~~~
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10. MYESIAN UGUSSION MODELS

A very general aathemstical structure which contains all of the

previous model, is the linear (regression) model

(10.1)

where j  and ~a are a x 1 random vectors of observable output var iables

sad unobservabl e srrv,r variables, respectively, H is a known n x p

design stztriz, and $ is a p 1 random vector of unknown regression

paromm t.re ; we assume that a prior joint density of Q,u) is known .

Given an observation j  — y , the problem is to draw poster ior—to—data

inferences about i , or about future values of j  for some (possibly )

different design matrix; this i. a problem in Bayesian regr ession. A

complete Bayesian regression anal ysis is very difficult , usua lly requiring

restrictive distributional assumptions on complicated algebraic manipulations

(see, e.g. [54)).

However, the linearized approach of credibility theory can be very

useful if the goal is to update only mean values of 8 or j ; prepos—

ten or error covaniances can also be determined.

Let the prior knowledge of {Ø u} be st~~an ized in the mean vectors:

(10.2) E(B) — b  ; E{1i I ~~
} — 0  (for all 

~~) 
;

and the covariance matrices:

(10.3) V{j}—~~~;EV (jI ~) — V ( } E ;

of order p x p and a x a , respectively. We define also alternate—

dimension versions of the covariances :

(10.4) D — HAN ’ ; £ — (H’E 1HY~ ;

— - - - 
_
~ a - ,  - - ________--
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which are a x n and p x p , respectively . Even if H is positive

definite (most applications have H diagonal , i.e., “hc.oscedsstic errors ,”

or “whit, noise”), c may not exist in many models of interest because

N i. not of rank max (p a)

There are two versions of the credibility forecast of the mean pars—

meter values ~(1) ~ E{j I z} • In the first ver sion :

(10.5) f (1) — (I — Z H ) b + Z 1  :

where I is the p x p unit matrix , and Z is a p x a credibility motrix

• (10.6) Z — AH ’(E + D)~~ . 
—

This clearly exists if, say, H is positive definite , and H contains

only nonnegative elements; an a x a inversion is required , even if H’1

is known , hence this form is suitable for limited—observation experiments

where n < p .

- 
I In the second version :

-~ - (10.7) 
~
(
~
) — (I — a)b + xi(i)

where ICy) is the classical (generalized ) least—squares estimator of j  :

(10.8) j(~
) • cB’E~~1 (H’i 1H) 11’E 1y

and a is a p x p credibility matrix:

(10.9) a - (I + eA’~)
1 

— A(t +

This matrix is analogous to the usual multidimensional credibility

matrix (6.5) with “one” ..aple, and show clearly the mixing of the prior
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mean and the classical estimator. Moreover, in many applications a > p ,

and (10.9) shows that only one p x p inversion is required to find i(z) .

if H 1 i. known, greatly reducing the computational labor. On the other

hand, to find ~(z) e.z’p iicitly ,  we require that c exist, which leads to

the classic problem of “identifiability,” and the requirement that

rank (H )—p.

The prepostenior covariance of the parameter estimation error can be

shown to be:

(10.10) V{B — f(j )) — (I — ZH)A — (I — s)A — (A’
~ +

Cf. (7.10).

Hachemeister (19] and Taylor (51] were the first to give special

versions of (10.7), (10.8) in credibility terminology. Many other results

and interpretations can be found in (34J.

However there are numerous nonlaye.ian versions of the above formulae

in earlier statistical literature [46], [52]. Priority for these formulae

probably belongs in the co unications theory literature , where generalized

least—squares and “pseudo—Bayes” estimators have been used in linear

(Wi.ner—Kaisw,i—Bucy) filters for many years, (see, e.g. (47], pp. 182—4);

specialized jargon of thi. field has no doubt delayed recognition of the

simularitie. between approaches. Also, filter theory emphasizes dynamic

regression models, with recursive calculation of successive forecasts to

reduce cosputational labor. An example of this approach for simple trend.

in regression parameters is given in [33] .

_ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _
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11. OTHER APPLICATIONS

In closing, we describe several noninsurance applications of credib ili-

ty theory .

11.1 Sampling Schemes

Classical. statistics treats in great detai l the analysis of varianc e

for complex sampling schemes. However , in many real applications, one has

also a prior estimate of the quantity being measured , and the experi mental

observations should be combined opt imally with this prio r knowledge . [37 ]

explores this idea for various nested sampling schemes; as might be expected

from Section 7, the prior mean value is combined with the classical estimators

in a manner proportional to their relative precisions.

11.2 Material Accountability Systems

The rapid proliferation of nuclear material has induced development of

statistical material accountability systems to monitor and “safeguard” the

production, storage, and shipment processes. The basic tool is a material

balance equation, which should balance out to zero if the material un-

accounted for ii also zero; however, there are very difficult instrumentation

problems in measuring radioactive materials, and this balance can only be

estimated statistically. (32] describes a simple batch material balance

closure problem. More genera l dynamic multi—stage problems can be tackled

using the formulae of Sectioa~1O.

11.3 Instrument Calibration and Measurement and Inverse Regression

0 An instrument ca’n be characteri zed by the simple linea r model
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(11.1) y 8 0 +8 1x + u .

In calibration, relatively precise standard inputs x1,x2, ... are given

to an uncalibrated instrument, resulting in outputs y1,y 2, ... which

contain observation errors u1 ,u2, ... . We generally have some

joint prior information about the instrument parameter. (80,B1) , and

this is updated using the calibration data.

In measurement , we place a partially known quantity x0 as input

(with some prior on its value). and observe — y0 ; the problem is then

to make an invørae regression to estimate

Clearly, the. general Bayesian formulation is to find

E{~~ y0;(x1,y1);(x2,y 2) ; ...} . In [31]. we show that the use of credibili-

ty breaks the estimation into two natural stages : (1) a credibility esti-

mation of (B.1~,8i) using the standards; (2) a linearized inverse regression

using the new parameter estimates .

11.4 Network Plows

Many road traffic , teleco unication, and accounting processes can be

modeled as fLows aver networks; the basic equation is Kirchoff’s conservation

law, in which the design matrix H of Section 10 iø the node—arc incidence

matrix. In one formulation, there is prior knowledge about arc flows and

their prior pr .cisions (usually highly correlated because they arise from

orig in/destination “path” flows) ; the probl em is to make a few boundary or

selected—arc flow measurements , and to infer the new arc flows. This prob—

lam is highly “unidentifiable ” in the classic sense because the rank of H • 

-

is one less than the number of nodes; however , the theory in (10.5) and

(10.6) still applies [35].

- -—-.~~. 
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11.5 Life Testing

The usual manner of inferring lifetime distributions in reliability

studies is to place a large number of components, N , on a test stand, and

run them for a fixed time T until C — C(T) c c N of the components have

failed . Assuming prior knowledge about the distribution parameters, the

pro blem is to make a posterior—to—test inference using C comp leted life-

times (i
~~ x~ I i — 1,2, ... , C] and N — C incomplete lifetimes

‘ T I i — C+l ,C+2, ..., N]

(36) examines the p roportional hazard lifetime distribution:

(11.2) Pr (
~~ 

> x — exp {—eQ(x)} ,

where Q is a known prototype failure function, and 0 has a Gaana prior;

it is shown that the Bayesian estimate of from this test is exactly a

credibility mixture of the prior estimate of together with a new

maximum likelihood estimator:

(11.3) 1 Q(x~) + (! l)Q(T)

which generalizes the well—known total—time—on— test statistic. 
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